An extension to the Wheeler phase-field model to allow decoupling of the capillary and kinetic anisotropies
A. Mullis ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 41, issue 3, 377-382
Abstract:
The formulation of the phase-field problem due to Wheeler et al. [Physica D 66, 243 (1993)] has been adopted and extended as a tool for solidification research by many groups around the World. However, an intrinsic problem of this model is that it couples two physically distinct anisotropies, those associated with the surface energy of the solid-liquid interface and attachment kinetics, into a single anisotropy parameter. In this paper we present a simple extension to the Wheeler model in which we show that introducing a complex form of the anisotropy function allows these two physical parameters to be decoupled. Copyright Springer-Verlag Berlin/Heidelberg 2004
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00330-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:41:y:2004:i:3:p:377-382
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2004-00330-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().