EconPapers    
Economics at your fingertips  
 

Dielectric resonance, local field distribution, and optical response in 3D resonant composites

B. Dai, Y. Gu (), C. Li and Q.-H. Gong ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 42, issue 2, 165-173

Abstract: We extend the Green’s function formalism in a binary 2D composite to 3D. Using the formalism, we investigate the dielectric resonances, local-field distribution, and effective linear optical responses for one-bond, two-bond and three-bond clusters, as well as for various disordered composites. Due to the different values of Green’s function in 2D and 3D, for the same cluster, the values of the dielectric resonances in 3D are smaller than those in 2D, but the fields are more localized than those in 2D. The sum rule of dielectric resonance in three-component composites is extended to d dimensions. For the same resonance, the intensity of the local-field in 3D is also weaker than that in the 2D case, but the fields are more localized than those in 2D. For the disordered composites in 2D and 3D, inverse participation ratios (IPR) with q=2 are used to represent the localization of the field. When we increase the concentration of impurity bonds, a blue shift of IPR peaks occurs in 3D, while in 2D, these peaks are very stable. Finally, both for 2D and 3D disordered composites, the absorption range broadens with increasing impurity concentration, and a red shift of the absorption peak is observed in 3D. Copyright Springer-Verlag Berlin/Heidelberg 2004

Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00368-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:42:y:2004:i:2:p:165-173

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2004-00368-5

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:42:y:2004:i:2:p:165-173