Epitaxial growth and magnetic exchange anisotropy in Fe3O4 /NiO bilayers grown on MgO(001) and Al2O3(0001)
C. Gatel,
E. Snoeck (),
V. Serin and
A. R. Fert
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 45, issue 2, 157-168
Abstract:
Epitaxial Fe3O4/NiO bilayers were epitaxially grown on MgO(001) and Al2O3(0001) substrates to investigate the influence of the fully spin compensated (001) and the non-compensated (111) NiO interface planes between the ferromagnetic (F) and antiferromagnetic (AF) layers on the AF/F exchange coupling. Bilayers of different magnetite thicknesses and constant NiO thickness were investigated. The structural characterizations indicate a perfect epitaxy of the two layers for the both growth directions in the two Fe3O4/NiO/MgO(001) and NiO/Fe3O4/Al2O3(0001) systems. An epitaxial ferrimagnetic (Ni,Fe)Fe2O4 phase is observed at the AF/F interface when the NiO oxide is grown on the top of the Fe3O4 layer while a perfectly flat AF/F interface is observed in the Fe3O4/NiO/MgO(001) system exhibiting only a very slight interdiffusion. Magnetic measurements indicate a relative strong bias at 300 K for the bilayers grown on Al2O3(0001), which decreases with the inverse of the ferrimagnetic layer thickness as theoretically expected. On the contrary, a zero exchange biasing is observed at 300 K for the bilayers grown on MgO(001). Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00073-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:45:y:2005:i:2:p:157-168
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00073-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().