Optical characterization of the polymer embedded alloyed bimetallic nanoparticles
V. I. Belotelov,
G. Carotenuto,
L. Nicolais,
G. P. Pepe () and
A. K. Zvezdin
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 45, issue 3, 317-324
Abstract:
A theoretical approach for the calculation of the bimetallic nanoparticles absorption spectra has been developed as an extension of the Mie theory in which nanoparticle dielectric function is found by the weighted linear combination of the dielectric functions for particles made of the corresponding pure metals. In the frame work of the theoretical model an expression for the resonance light absorption frequency were derived taking into account the interband transitions in the dielectric functions. We propose a simple method for the on-line monitoring of the bimetallic nanoparticles composition based on the measurement of the absorption peak position. Elaborated theoretical approach was used to investigate the polymer embedded Ag/Au nanoparticles which were prepared by reducing gold and silver salts (HAuCl4 and AgNO3, respectively) by ethylene glycol in presence of poly(vinyl pyrrolidone) (PVP) at room temperature. Calculated absorption spectra for the Ag/Au nanoscopic systems showed good agreement with the experimental data. Temporal evolution of the Ag/Au nanoparticles has also been investigated by this approach. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00203-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:45:y:2005:i:3:p:317-324
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00203-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().