Melting evolution and diffusion behavior of vanadium nanoparticles
Wangyu Hu (),
Shifang Xiao,
Jianyu Yang and
Zhi Zhang
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 45, issue 4, 547-554
Abstract:
Molecular dynamics calculations have been performed to study the melting evolution, atomic diffusion and vibrational behavior of bcc metal vanadium nanoparticles with the number of atoms ranging from 537 to 28475 (diameters around 2–9 nm). The interactions between atoms are described using an analytic embedded-atom method. The obtained results reveal that the melting temperatures of nanoparticles are inversely proportional to the reciprocal of the nanoparticle size, and are in good agreement with the predictions of the thermodynamic liquid-drop model. The melting process can be described as occurring in two stages, firstly the stepwise premelting of the surface layer with a thickness of 2–3 times the perfect lattice constant, and then the abrupt overall melting of the whole cluster. The heats of fusion of nanoparticles are also inversely proportional to the reciprocal of the nanoparticle size. The diffusion is mainly localized to the surface layer at low temperatures and increases with the reduction of nanoparticle size, with the temperature being held constant. The radial mean square vibration amplitude (RMSVA) is developed to study the anharmonic effect on surface shells. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00210-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:45:y:2005:i:4:p:547-554
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00210-8
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().