A new car-following model: full velocity and acceleration difference model
X. Zhao () and
Z. Gao ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 47, issue 1, 145-150
Abstract:
By introducing acceleration difference terms into the full velocity difference models (FVDM) by Jiang et al. (1995), we present a full velocity and acceleration difference model (FVADM). The main improvement upon the previous models is that the FVADM can exactly describe the driver’s behavior under an urgent case, where no collision occurs and no unrealistic deceleration appears in this model, while vehicles determined by the previous car-following models collide after only few seconds. The model is investigated by numerical methods. The simulation results indicate that the acceleration difference has an important impact on the traffic dynamics, especially under urgent conditions. Besides the urgent situations, the model still remains similar properties to those of the FVDM. In the model, the phase transition of traffic flow is observed, and the hysteresis loop is obtained in the headway- velocity plane, also. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00304-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:47:y:2005:i:1:p:145-150
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00304-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().