Damage growth in random fuse networks
F. Reurings and
M. J. Alava ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 47, issue 1, 85-91
Abstract:
The correlations among elements that break in random fuse network fracture are studied, with disorder strong enough to allow for volume damage before final failure. The growth of microfractures is found to be uncorrelated above a lengthscale, that increases as the final breakdown approaches. Since the fuse network strength decreases with sample size, asymptotically the process resembles more and more mean-field-like (“democratic fiber bundle”) fracture. This is found from the microscopic dynamics of avalanches or microfractures, from a study of damage localization via entropy, and from the final damage profile. In particular, the last one is statistically constant, except exactly at the final crack zone, in spite of the fact that the fracture surfaces are self-affine. This also implies that the correlations in damage are not extensive. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00292-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:47:y:2005:i:1:p:85-91
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00292-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().