Zipf’s law for fractal voids and a new void-finder
J. Gaite ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 47, issue 1, 93-98
Abstract:
Voids are a prominent feature of fractal point distributions but there is no precise definition of what is a void (except in one dimension). Here we propose a definition of voids that uses methods of discrete stochastic geometry, in particular, Delaunay and Voronoi tessellations, and we construct a new algorithm to search for voids in a point set. We find and rank-order the voids of suitable examples of fractal point sets in one and two dimensions to test whether Zipf’s power-law holds. We conclude affirmatively and, furthermore, that the rank-ordering of voids conveys similar information to the number-radius function, as regards the scaling regime and the transition to homogeneity. So it is an alternative tool in the analysis of fractal point distributions with crossover to homogeneity and, in particular, of the distribution of galaxies. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00306-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:47:y:2005:i:1:p:93-98
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00306-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().