Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
F. G. Schmitt ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 48, issue 1, 129-137
Abstract:
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations between these scaling exponents, associated to different transformations linking space and time scales. We obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian passive scalar scaling exponents. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00374-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:48:y:2005:i:1:p:129-137
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00374-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().