EconPapers    
Economics at your fingertips  
 

Applications of correlation inequalities to low density graphical codes

N. Macris ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2006, vol. 50, issue 1, 51-55

Abstract: This contribution is based on the contents of a talk delivered at the Next-SigmaPhi conference held in Crete in August 2005. It is adressed to an audience of physicists with diverse horizons and does not assume any background in communications theory. Capacity approaching error correcting codes for channel communication known as Low Density Parity Check (LDPC) codes have attracted considerable attention from coding theorists in the last decade. Surprisingly strong connections with the theory of diluted spin glasses have been discovered. In this work we elucidate one new connection, namely that a class of correlation inequalities valid for Gaussian spin glasses can be applied to the theoretical analysis of LDPC codes. This allows for a rigorous comparison between the so called (optimal) maximum a posteriori and the computationaly efficient belief propagation decoders. The main ideas of the proofs are explained and we refer to recent works for the more lengthy technical details. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Keywords: 05.20.-y Classical statistical mechanics; 89.70.+c Information theory and communication theory; 02.90.+p Other topics in mathematical methods in physics (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2006-00129-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:50:y:2006:i:1:p:51-55

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2006-00129-6

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:50:y:2006:i:1:p:51-55