Numerical studies of gravity destabilized percolation in 2D porous media
Z. Bo,
D. Loggia (),
L. Xiaorong,
G. Vasseur and
H. Ping
The European Physical Journal B: Condensed Matter and Complex Systems, 2006, vol. 50, issue 4, 631-637
Abstract:
Two dimensional simulations of percolation are realized on square networks of pore throats with a random capillary pressure distribution. We analyse the influence of a destabilizing gravity field (g) and of the standard deviation of the distribution of the capillary pressure thresholds (W t ). The fragmentation process is not taken into account in this study. For an increase of g or/and when W t decreases, two transitions are analyzed with three different regimes displacement patterns: Invasion percolation, invasion percolation in a gradient, and invasion in a pure gradient. The transitions are controlled both by the ratio g/W t and by the sample size (L). A scaling law between the saturation at the percolation threshold and g/W t allows delineating the three regimes in agreement with theoretical argument of the percolation in a gradient. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006
Keywords: 47.55.Mh Flows through porous media, 61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates) , 47.55.Kf Particle-laden flows, (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2006-00168-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:50:y:2006:i:4:p:631-637
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2006-00168-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().