EconPapers    
Economics at your fingertips  
 

Cooperative motions in a finite size model of liquid silica: an anomalous behavior

V. Teboul ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2006, vol. 51, issue 1, 111-118

Abstract: Finite size effects on dynamical heterogeneity are studied in liquid silica with Molecular Dynamics simulations using the BKS potential model. When the system size decreases relaxation times are found to increase in accordance with previous results in finite-size simulations and confined liquids. It has been suggested that this increase may be related to a modification of the spatially heterogeneous dynamics in confined liquids. In agreement with this hypothesis we observe a decrease of the spatially heterogeneous dynamics when the size decreases. The spatially heterogeneous dynamics is usually characterized by the dynamical aggregation of the most or the least mobile atoms. However we find that the decrease of the dynamical aggregation associated to the least mobile atoms is much more important than the decrease associated to the most mobile atoms when the size decreases. This result associated with a slowing down of the liquid is surprising as it is expected that the dynamical aggregation of the least mobile atoms should increase the slowing down of the liquid dynamics. The decrease of the heterogeneous behaviour is also in contradiction with the increase of the spatially heterogeneous dynamics observed in liquids confined inside nanopores. However, an increase of the non-Gaussian parameter appears both for the confinement inside nanopores and for the finite size simulations. As the non-Gaussian parameter is usually associated with the heterogeneous dynamics, the increase of the non-Gaussian parameter together with a decrease of the spatially heterogeneous dynamics is also surprising. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Keywords: 61.43.Fs Glasses; 64.70.Pf Glass transitions; 66.10.Cb Diffusion and thermal diffusion (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2006-00186-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:51:y:2006:i:1:p:111-118

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2006-00186-9

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:51:y:2006:i:1:p:111-118