Numerical entropy and phason elastic constants of plane random tilings with any 2D-fold symmetry
N. Destainville ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2006, vol. 52, issue 1, 119-123
Abstract:
We perform Transition matrix Monte Carlo simulations to evaluate the entropy of rhombus tilings with fixed polygonal boundaries and 2D-fold rotational symmetry. We estimate the large-size limit of this entropy for D=4 to 10. We confirm analytic predictions of [N. Destainville et al., J. Stat. Phys. 120, 799 (2005) and M. Widom et al., J. Stat. Phys. 120, 837 (2005)], in particular that the large size and large D limits commute, and that entropy becomes insensible to size, phason strain and boundary conditions at large D. We are able to infer finite D and finite size scalings of entropy. We also show that phason elastic constants can be estimated for any D by measuring the relevant perpendicular space fluctuations. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006
Keywords: 61.44.Br Quasicrystals; 05.10.Ln Monte Carlo methods (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2006-00263-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:52:y:2006:i:1:p:119-123
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2006-00263-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().