How human drivers control their vehicle
P. Wagner ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2006, vol. 52, issue 3, 427-431
Abstract:
The data presented here show that human drivers apply a discrete noisy control mechanism to drive their vehicle. A car-following model built on these observations, together with some physical limitations (crash-freeness, acceleration), lead to non-Gaussian probability distributions in the speed difference and distance which are in good agreement with empirical data. All model parameters have a clear physical meaning and can be measured. Despite its apparent complexity, this model is simple to understand and might serve as a starting point to develop even quantitatively correct models. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006
Keywords: 45.05.+x General theory of classical mechanics of discrete systems (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2006-00300-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:52:y:2006:i:3:p:427-431
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2006-00300-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().