Growing distributed networks with arbitrary degree distributions
G. Ghoshal and
M. E.J. Newman ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2007, vol. 58, issue 2, 175-184
Abstract:
We consider distributed networks, such as peer-to-peer networks, whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. We also describe a mechanism based on biased random walks by which appropriate rules could be implemented in practice. As an example application, we describe and simulate the construction of a peer-to-peer network optimized to minimize search times and bandwidth requirements. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007
Keywords: 89.75.Fb Structures and organization in complex systems; 89.75.Hc Networks and genealogical trees (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2007-00208-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:58:y:2007:i:2:p:175-184
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2007-00208-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().