Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm
M. A. Jafarizadeh (),
R. Sufiani (),
S. Salimi () and
S. Jafarizadeh ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2007, vol. 59, issue 2, 199-216
Abstract:
In papers [Jafarizadehn and Salimi, Ann. Phys. 322, 1005 (2007) and J. Phys. A: Math. Gen. 39, 13295 (2006)], the amplitudes of continuous-time quantum walk (CTQW) on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated with their adjacency matrix. Here in this paper, it is shown that the CTQW on any arbitrary graph can be investigated by spectral analysis method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition (GQD) have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing the walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. The capability of Lanczos-based algorithm for evaluation of CTQW on graphs (GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at the limit of the large number of vertices, are in agreement with those of central limit theorem of [Phys. Rev. E 72, 026113 (2005)]. At the end, some applications of the method such as implementation of quantum search algorithms, calculating the resistance between two nodes in regular networks and applications in solid state and condensed matter physics, have been discussed, where in all of them, the Lanczos algorithm, reduces the Hilbert space to some smaller subspaces and the problem is investigated in the subspace with maximal dimension. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007
Keywords: 03.65.Ud Entanglement and quantum nonlocality (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2007-00281-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:59:y:2007:i:2:p:199-216
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2007-00281-5
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().