Apparent correlations between the static length of relaxation and the linear size of dynamic heterogeneity in fragile liquids
S. Davatolhagh ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2007, vol. 59, issue 3, 291-295
Abstract:
The most puzzling aspect of the glass transition observed in laboratory is the decoupling of the dynamics from the structure. As an attempt to reconcile the dynamic and the static lengthscales associated with the glass problem, we discuss the apparent correlations between the static relaxation length, defined as that lengthscale over which the potential energy fluctuation is correlated, with the linear size of the dynamic heterogeneity. The dynamic heterogeneous domains with long life-times, may therefore be linked to the droplets of low potential energy, or the tightly bound regions inside the liquid. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007
Keywords: 64.70.Pf Glass transitions (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2007-00291-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:59:y:2007:i:3:p:291-295
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2007-00291-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().