Mechanisms of amorphization-induced swelling in silicon carbide: the molecular dynamics answer
M. Bertolus (),
F. Ribeiro and
M. Defranceschi
The European Physical Journal B: Condensed Matter and Complex Systems, 2007, vol. 60, issue 4, 423-433
Abstract:
We present here the continuation of an investigation of the irradiation-induced swelling of SiC using classical molecular dynamics (CMD) simulations. Heavy ion irradiation has been assumed to affect the material in two successive steps (a) creation of local atomic disorder, modeled by the introduction of extended amorphous areas with various sizes and shapes in a crystalline SiC sample at constant volume (b) induced swelling, determined through relaxation using Molecular Dynamics at constant pressure. This swelling has been computed as a function of the amorphous fraction introduced. Two different definitions of the amorphous fraction were introduced to enable meaningful comparisons of our calculations with experiments and elastic modeling. One definition based on the displacements relative to the ideal lattice positions was used to compare the CMD results with data from experiments combining ion implantations and channeled Rutherford Backscattering analyses. A second definition based on atomic coordination was used to compare the CMD results to those yielded by a simplified elastic model. The results obtained are as follows. On the one hand, comparison of the swelling obtained as a function of the lattice amorphous fraction with the experimental results shows that the melting-quench amorphization simulates the best the irradiation-induced amorphization observed experimentally. This is consistent with the thermal spike phenomenon taking place during ion implantation. On the other hand, disorder analysis at the atomic scale confirms the elastic behavior of the amorphization-induced swelling, in agreement with the comparison with the results of an elastic model. First, no major structural reconstruction occurs during relaxation or annealing. Second, the systems with the most disordered and constrained amorphous area undergo the largest swelling. This means that the disorder and the constraints of the bulk amorphous area are the driving forces for the swelling observed. On the contrary, the nature of the interface does not affect significantly the swelling observed. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007
Keywords: 31.15.Qg Molecular dynamics and other numerical methods; 61.80.Jh Ion radiation effects (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2008-00008-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:60:y:2007:i:4:p:423-433
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2008-00008-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().