Low-field magnetic response of multi-junction superconducting quantum interference devices
R. De Luca () and
A. Fedullo
The European Physical Journal B: Condensed Matter and Complex Systems, 2008, vol. 61, issue 1, 59-66
Abstract:
The magnetic states of multi-junction superconducting quantum interference device containing 2N identical conventional Josephson junctions are studied by means of a perturbation analysis of the non-linear first-order ordinary differential equations governing the dynamics of the Josephson junctions in these devices. In the zero-voltage state, persistent currents are calculated in terms of the externally applied magnetic flux Φ ex . The resulting d.c. susceptibility curves show that paramagnetic and diamagnetic states are present, depending on the value of Φ ex . The stability of these states is qualitatively studied by means of the effective potential notion for the system. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008
Keywords: 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects, 85.25.Dq Superconducting quantum interference devices (SQUIDs), (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2008-00040-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:61:y:2008:i:1:p:59-66
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2008-00040-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().