Navier-Stokes-like equations applicable to adaptive cruise control traffic flows
Y. G. Liu (),
Z. S. You and
J. L. Zhou
The European Physical Journal B: Condensed Matter and Complex Systems, 2008, vol. 61, issue 3, 363-370
Abstract:
Under the scenario in which, within a traffic flow, each vehicle is controlled by adaptive cruise control (ACC), and the macroscopic one-vehicle probability distribution function fits the Paveri-Fontana hypothesis, a set of reduced Paveri-Fontana equations considering the ACC effect is derived. With the set, by maximizing the specially defined informational entropy deviating from a certain reference homogeneous steady state, the Navier-Stokes-like equations considering ACC are introduced. For a homogeneous steady traffic flow in a single circular lane, when the steady velocity or density is perturbed along the lane, numerical simulations indicate that ACC-controlled vehicles require less time for re-equilibration than manually driven vehicles. The re-equilibrated steady densities for ACC and manually driven traffic flows are all close to the original values; the same is true for the re-equilibrated steady velocity for manually driven traffic flows. For ACC traffic flows, the re-equilibrated steady velocity may be higher or lower than the original value, depending upon a parameter ω (introduced to solve the distribution function of the reference steady state), and the headway time (introduced in ACC models). Also, the simulations indicate that only an appropriate parameter set can ensure the performance of ACC; otherwise, ACC may result in low traffic running efficiency, although traffic flow stability becomes better. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008
Keywords: 45.70.Vn Granular models of complex systems; traffic flow, 02.50.-r Probability theory, stochastic processes, and statistics, (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2008-00087-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:61:y:2008:i:3:p:363-370
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2008-00087-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().