EconPapers    
Economics at your fingertips  
 

The Geyser effect in the expansion of solid helium into vacuum

G. Benedek, P. Nieto and J. P. Toennies ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2010, vol. 76, issue 2, 237-249

Abstract: The mechanism behind the intensity oscillations accompanying the flow of solid helium through a micron-sized orifice into vacuum, called the geyser effect, is investigated by measuring the pressure pulses at various locations in the entire flow system. The new results reveal that the source chamber pressure pulses have the same shape as the external detector pulses monitored in the previous experiments [G. Benedek et al., Phys. Rev. Lett. 95, 095301 (2005)]. New experiments in which the external gas reservoir is isolated from the pressure regulator provide direct information on the mechanism of the collapse leading to the geyser pulses. Thus each geyser pulse is triggered by the breakdown of a plug located upstream of the source chamber. The flow of liquid through the orifice determines the shape of the subsequent geyser pulse. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2010-00207-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:76:y:2010:i:2:p:237-249

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2010-00207-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:76:y:2010:i:2:p:237-249