Electronic excitation energies in TiO 2 in the fluorite phase
X. G. Kong,
Y. Yu and
T. Gao ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2010, vol. 76, issue 3, 365-371
Abstract:
The ab initio pseudopotential method within the generalized gradient approximation (GGA) and quasiparticle approximation has been used to investigate the electronic properties of titanium dioxide in the rutile, anatase, and fluorite structures, respectively. Here we present the GW approximation for the electronic self-energy, which allows to calculate excited-state properties, especially electronic band structures. For this calculation, good agreement with the experimental results for the minimum band gaps in rutile and anatase phase is obtained. In the fluorite phase we predict that titanium dioxide will be an indirect (Γ to X) wide band-gap semiconductor (2.367 or 2.369 eV) and the properties remain to be confirmed by experiment. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2010-00215-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:76:y:2010:i:3:p:365-371
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2010-00215-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().