Quantum mechanical aspect of first order phase transition of crystals
J. Kobayashi ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2010, vol. 76, issue 3, 379-390
Abstract:
It has been generally believed that some external physical porperties, e.g. volume, enthalpy, and entropy, etc. change discontinuously at first order phase transition temperatures, since Ehrenfest’s proposition. However, the deviation from this proposition was often found in many crystals. As the progress of experimental methods and the accuracy develop the number of crystals that manifest unusual transition processes is increasing. Notably aberrant phenomena are as follows. An intermediate phase appears whose crystal structure is undoubtedly different from those of the low and high temperature forms. The peak of differential thermal analysis of specific heat is splitted into two as if one transition inevitably induces another. The interpretation of these abnormal behaviors in the vicinity of the transition is certainly beyond reach of thermodynamic ideas. We assumed that the eigenkets of Boltzmann’s H of each phase in the vicinity of the transition temperature interact to produce perturbing state. Then the intermediate phase named M phase emerges, and its eigenket is the superposition of eigenkets of commuting Hamiltonian of the two temperature phases. It is natural that the new M phase has different structure from those of the two phases. The above mentioned phenomena occurring in dichlorobenzophenone, NaNO 2 , 1-Ethyl-3-(4-methylpentanoyl)urea, and VO 2 are explained by this quantum mechanical theory. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2010-00217-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:76:y:2010:i:3:p:379-390
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2010-00217-0
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().