Current-induced domain wall motion with adiabatic and nonadiabatic spin torques in magnetic nanowires
Z. Z. Sun (),
J. Schliemann,
P. Yan () and
X. R. Wang
The European Physical Journal B: Condensed Matter and Complex Systems, 2011, vol. 79, issue 4, 449-453
Abstract:
We investigate current-driven domain wall (DW) propagation in magnetic nanowires in the framework of the modified Landau-Lifshitz-Gilbert equation with both adiabatic and nonadiabatic spin torque (AST and NAST) terms. By employing a simple analytical model, we can demonstrate the essential physics that any small current density can drive the DW motion along a uniaxial anisotropy nanowire even in absence of NAST, while a critical current density threshold is required due to intrinsic anisotropy pinning in a biaxial nanowire without NAST. The DW motion along the uniaxial wire corresponds to the asymptotical DW oscillation solution under high field/current in the biaxial wire case. The current-driven DW velocity weakly depends on the NAST parameter β in a uniaxial wire and it is similar to the β=α case (α: damping) in the biaxial wire. Apart from that, we discuss the rigid DW motion from both the energy and angular momentum viewpoints and point out some physical relations in between. We also propose an experimental scheme to measure the spin current polarization by combining both field- and current-driven DW motion in a usual flat (biaxial) nanowire. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2011-10699-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:79:y:2011:i:4:p:449-453
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2011-10699-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().