Effects of geometrical symmetry on the vortex in mesoscopic superconductors
X.-H. Hu (),
A.-C. Ji,
X.-G. Qiu () and
W.-M. Liu
The European Physical Journal B: Condensed Matter and Complex Systems, 2011, vol. 79, issue 4, 473-477
Abstract:
We first systematically study the multivortex states in mesoscopic superconductors via self-consistent Bogoliubov-de Gennes equations. Our work focuses on how the geometrical symmetry affects the penetration and arrangement of vortices in mesoscopic superconductors and find that the key parameter determining the entrance of the vortex is the current density at the hot spots on the edge of sample. Through determining the spatial distribution of hot spots, the geometrical symmetry of the superconducting sample influences the nucleation and entrance of vortices. Our results propose one possible experimental approach to control and manipulate the quantum states of mesoscopic superconductors with their topological geometries, and they can be easily generalized to the confined superfluids and Bose-Einstein condensates. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2011-10967-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:79:y:2011:i:4:p:473-477
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2011-10967-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().