Thermoelectric effects of a laterally coupled double-quantum-dot structure
C. Jiang,
W. Gong and
Y. Zheng ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2012, vol. 85, issue 11, 1-9
Abstract:
We investigate the thermoelectric properties of a laterally coupled double-quantum-dot structure. For this structure, a one-dimensional quantum dot (QD) chain between two leads forms a main channel for electron transmission, and each QD in the chain laterally couples to an additional QD. It is found that at low temperature, similar insulating bands emerge around the antiresonant points in the electronic and thermal conductance spectra. And, the edges of the insulating bands become steep rapidly with the increase of QD numbers. What’s interesting is that striking thermoelectric effect exists in the energy region where the insulating bands appear. Furthermore, with the formation of the insulation bands, the magnitude of the Seebeck coefficient becomes stable, whereas the thermoelectric efficiency is increased. By plotting the Lorentz number spectrum, we observe that in such a structure, the Lorentz number strongly violates the Wiedemann-Franz law in the insulating-band region with its maximum at the point of antiresonance. When weak intradot Coulomb interaction is taken into account, the weakened thermoelectric effect can still be improved with the increase of QD numbers. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012
Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2012-30190-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:85:y:2012:i:11:p:1-9:10.1140/epjb/e2012-30190-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2012-30190-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().