Estimation of the Hurst exponent from noisy data: a Bayesian approach
N. Makarava () and
M. Holschneider
The European Physical Journal B: Condensed Matter and Complex Systems, 2012, vol. 85, issue 8, 1-6
Abstract:
We consider a model based on the fractional Brownian motion under the influence of noise. We implement the Bayesian approach to estimate the Hurst exponent of the model. The robustness of the method to the noise intensity is tested using artificial data from fractional Brownian motion. We show that estimation of the parameters achieved when noise is considered explicitly in the model. Moreover, we identify the corresponding noise-amplitude level that allow to receive the correct estimation of the Hurst exponents in various cases. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012
Keywords: Statistical and Nonlinear Physics (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2012-30221-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:85:y:2012:i:8:p:1-6:10.1140/epjb/e2012-30221-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2012-30221-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().