EconPapers    
Economics at your fingertips  
 

Statistical model for the effects of phase and momentum randomization on electron transport

T. Stegmann, M. Zilly, O. Ujsághy and D. Wolf

The European Physical Journal B: Condensed Matter and Complex Systems, 2012, vol. 85, issue 8, 1-6

Abstract: A simple statistical model for the effects of dephasing on electron transport in one-dimensional quantum systems is introduced, which allows to adjust the degree of phase and momentum randomization independently. Hence, the model is able to describe the transport in an intermediate regime between classical and quantum transport. The model is based on Büttiker’s approach using fictitious reservoirs for the dephasing effects. However, in contrast to other models, at the fictitious reservoirs complete phase randomization is assumed, which effectively divides the system into smaller coherent subsystems, and an ensemble average over randomly distributed dephasing reservoirs is calculated. This approach reduces not only the computation time but allows also to gain new insight into system properties. In this way, after deriving an efficient formula for the disorder-averaged resistance of a tight-binding chain, it is shown that the dephasing-driven transition from localized-exponential to ohmic-linear behavior is not affected by the degree of momentum randomizing dephasing. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2012-30348-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:85:y:2012:i:8:p:1-6:10.1140/epjb/e2012-30348-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2012-30348-y

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:85:y:2012:i:8:p:1-6:10.1140/epjb/e2012-30348-y