Application of hierarchical equations of motion (HEOM) to time dependent quantum transport at zero and finite temperatures
Heng Tian and
GuanHua Chen ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 10, 1-14
Abstract:
Going beyond the limitations of our earlier works [X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007); X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010)], we propose, in this manuscript, a new alternative approach to simulate time-dependent quantum transport phenomenon from first-principles. This new practical approach, still retaining the formal exactness of HEOM framework, does not rely on any intractable parametrization scheme and the pole structure of Fermi distribution function, thus, can seamlessly incorporated into first-principles simulation and treat transient response of an open electronic systems to an external bias voltage at both zero and finite temperatures on the equal footing. The salient feature of this approach is surveyed, and its time complexity is analysed. As a proof-of-principle of this approach, simulation of the transient current of one dimensional tight-binding chain, driven by some direct external voltages, is demonstrated. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Keywords: Computational Methods (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-40333-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:10:p:1-14:10.1140/epjb/e2013-40333-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2013-40333-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().