EconPapers    
Economics at your fingertips  
 

Full t-matrix approach to quasiparticle interference in non-centrosymmetric superconductors

Alireza Akbari () and Peter Thalmeier

The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 12, 1-11

Abstract: We develop the full t-matrix theory of quasiparticle interference (QPI) for non-centrosymmetric (NCS) superconductors with Rashba spin-orbit coupling. We give a closed solution for the QPI spectrum for arbitrary combination and strength of nonmagnetic (V c ) and magnetic (V m ) impurity scattering potentials in terms of integrated normal and anomalous Green’s functions. The theory is applied to a realistic 2D model of the Ce-based 131-type heavy fermion superconductors. We discuss the QPI dependence on frequency, composition and strength of scattering and compare with Born approximation results. We show that the QPI pattern is remarkably stable against changes in the scattering model and can therefore give reliable information on the properties of Rashba-split Fermi surface sheets and in particular on the accidental nodal position of the mixed singlet-triplet gap function in NCS superconductors. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-40859-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:12:p:1-11:10.1140/epjb/e2013-40859-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2013-40859-6

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:86:y:2013:i:12:p:1-11:10.1140/epjb/e2013-40859-6