Optimal control of quantum revival
Esa Räsänen () and
Eric Heller
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 1, 1-5
Abstract:
Increasing fidelity is the ultimate challenge of quantum information technology. In addition to decoherence and dissipation, fidelity is affected by internal imperfections such as impurities in the system. Here we show that the quality of quantum revival, i.e., periodic recurrence in the time evolution, can be restored almost completely by coupling the distorted system to an external field obtained from quantum optimal control theory. We demonstrate the procedure with wave-packet calculations in both one- and two-dimensional quantum wells, and analyze the required physical characteristics of the control field. Our results generally show that the inherent dynamics of a quantum system can be idealized at an extremely low cost. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Keywords: Computational Methods (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2012-30921-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:1:p:1-5:10.1140/epjb/e2012-30921-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2012-30921-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().