Multiple information transmission using only one scalar chaotic time series
Fei Sun,
Lixiang Li,
Haipeng Peng (),
Cong Wang and
Yixian Yang
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 2, 1-9
Abstract:
In this paper, we explore the issue that how many messages can be transmitted through one scalar chaotic time series. A scheme is proposed for modulating multiple messages into the system. Based on the adaptive parameter estimation method, provided that some special conditions are satisfied, such as the long-time persistent excitation condition or the long-time linearly independent condition, the carried information could be recovered at the receiver. This scheme has potential application in chaotic optical communication (COC). Its feasibility and effectiveness are demonstrated by numerical examples. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Keywords: Statistical and Nonlinear Physics (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2012-30403-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:2:p:1-9:10.1140/epjb/e2012-30403-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2012-30403-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().