Spin-polarized electron-hole quantum bilayers: finite layer width and mass-asymmetric effects
Mukesh Nayak and
Lalit Saini ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 3, 1-6
Abstract:
The influence of mass-asymmetry and finite layer width in phase-transition from the liquid-state to the density-modulated ground-state of the spin-polarized electron-hole quantum bilayers (EHBL) is explored within the Singwi, Tosi, Land and Sjölander (qSTLS) approach. At the same number density of electrons and holes, in addition to the stronger interlayer correlations, the mass-asymmetry also shows stronger intralayer correlations in the hole layer than that of the electron layer. This change in the behaviour of correlations affects the ground-state of the spin-polarized EHBL system. Interestingly, we notice the enhancement of critical density for the onset of Wigner crystallization as compared to the recent results of spin-polarized mass-symmetric EHBL system. Pair-correlation function and local-field correction factor show a strong in-phase oscillations at the instability region. Further, we find that the inclusion of finite layer width weakens the intralayer correlations. As a result, the critical density for Wigner crystallization is lowered. The present results are compared with the recent results of spin-polarized (and unpolarized) mass-symmetric EHBL with zero (finite) layer width. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-30654-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:3:p:1-6:10.1140/epjb/e2013-30654-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2013-30654-x
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().