EconPapers    
Economics at your fingertips  
 

Enhanced nucleation fields due to dipolar interactions in nanocomposite magnets

Johann Fischbacher (), Simon Bance, Lukas Exl, Markus Gusenbauer, Harald Oezelt, Franz Reichel and Thomas Schrefl

The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 3, 1-6

Abstract: One approach to construct powerful permanent magnets while using less rare-earth elements is to combine a hard magnetic material having a high coercive field with a soft magnetic material having a high saturation magnetization at the nanometer scale and create so-called nanocomposite magnets. If both materials are strongly coupled, exchange forces will form a stable magnet. We use finite element micromagnetics simulations to investigate the changing hysteresis properties for varying arrays of soft magnetic spherical inclusions in a hard magnetic body. We show that the anisotropy arising from dipolar interactions between soft magnetic particles in a hard magnetic matrix can enhance the nucleation field by more than 10% and strongly depends on the arrangement of the inclusions. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-30938-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:3:p:1-6:10.1140/epjb/e2013-30938-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2013-30938-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:86:y:2013:i:3:p:1-6:10.1140/epjb/e2013-30938-1