Effects of directional migration on prisoner’s dilemma game in a square domain
Hongyan Cheng (),
Qionglin Dai,
Haihong Li,
Xiaolan Qian,
Mei Zhang and
Junzhong Yang
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 4, 1-6
Abstract:
We introduce a new migration rule, the directional migration, into evolutionary prisoner’s dilemma games defined in a square domain with periodic boundary conditions. We find that cooperation can be enhanced to a much higher level than the case in the absence of migration. Additionally, the presence of the directional migration has profound impact on the population structure: the directional migration drives individuals to form a number of dense clusters which resembles social cohesion. The evolutionary game theory incorporating the directional migration can reproduce some real characteristics of populations in human society and may shed light on the problem of social cohesion. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Keywords: Statistical and Nonlinear Physics (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-40076-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:4:p:1-6:10.1140/epjb/e2013-40076-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2013-40076-5
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().