Tailoring the magnetic anisotropy of thin film permalloy microstrips by combined shape and induced anisotropies
Alfredo García-Arribas (),
Eduardo Fernández,
Andrey V. Svalov,
Galina V. Kurlyandskaya,
Ane Barrainkua,
David Navas and
José Manuel Barandiaran
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 4, 1-7
Abstract:
The sensitivity of magnetic sensors based on the Giant Magneto-Impedance effect can be enhanced using high permeability materials with a well-defined but small transverse anisotropy. We describe an experimental study performed on multilayered, permalloy-based thin films deposited by sputtering under a magnetic field that produces a homogeneous uniaxial anisotropy in the plane of the film. Patterning of the deposit by photolithographic methods into strip-shaped samples (with their long direction perpendicular to the induced anisotropy) establishes a longitudinal shape anisotropy that competes with the transversal one induced at deposition. The combination and competition of the two mutually perpendicular uniaxial anisotropies result in an effective one with a reduced magnitude (the difference between both of them) in the transversal direction. As the strength of the shape anisotropy is determined by the relation between width and length of the stripe, the magnitude of the effective anisotropy can be conveniently modulated by adequately selecting the aspect ratio of the patterned sample. The hysteresis loops measured by Kerr effect magnetometry confirm that the effective transversal anisotropy field can be reduced from 5 to 1 Oe which should concomitantly increase the sensitivity of thin film magneto-impedance sensors. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-30933-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:4:p:1-7:10.1140/epjb/e2013-30933-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2013-30933-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().