Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game
Wen Zhang,
Chen Xu () and
Pak Hui
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 5, 1-6
Abstract:
The dissatisfied adaptive snowdrift game (DASG) describes the adaptive actions driven by the level of dissatisfaction when two connected agents interact. We study the DASG in static networks both numerically and analytically. In a random network of uniform degree k, the system evolves into a homogeneous state consisting only of cooperators when the cost-to-benefit ratio r > r 0 and a mixed phase with the coexistence of cooperators and defectors when r > r 0 , where r 0 is a threshold. For an infinite population, the large k limit corresponding to the well-mixed case is solved analytically. A theory is developed based on the pair approximation. It gives the frequency of cooperation f c and the densities of different pairs that are in good agreement with simulation results. The results revealed that f c is enhanced in networked populations with a finite k, when compared with the well-mixed case. The reasons that the theory works well for the present model are traced back to the weak spatial correlation implied by the random network and the fact that the adaptive actions in DASG are driven only by the strategy pairs. The results shed light on the class of models that the pair approximation is applicable. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Keywords: Statistical and Nonlinear Physics (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-30997-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:5:p:1-6:10.1140/epjb/e2013-30997-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2013-30997-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().