EconPapers    
Economics at your fingertips  
 

Molecular hydrogen and oxygen interactions with armchair Si nanotubes

Haoliang Chen and Asok K. Ray ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 6, 1-11

Abstract: Molecular hydrogen and oxygen adsorptions on a (6, 6) armchair silicon nanotube have been studied by optimizing the distances of the admolecules from both inside and outside the tube. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP functional. The molecule is originally placed perpendicular or parallel to the tube axis. Hydrogen adsorption with the molecular axis aligned parallel to the surface of the nanotube is less favorable. Hydrogen molecule does not dissociate while oxygen molecule dissociates after optimization. The on-top site is the only preferred site for hydrogen molecule with an adsorption energy of 3.71 eV and an optimized distance of 3.31 for external adsorption whereas the on-top site is the most preferred site with adsorption energy of 3.69 eV for internal adsorption. For oxygen, the molecule dissociates and the most preferred sites are the two bridge sites with an adsorption energy of 9.64 eV, the optimized distance being 1.65/1.68 Å when it is adsorbed from the outside of the tube. When oxygen molecule is originally placed at on-top site it will hold as a molecule after adsorption with a slightly increased bond length. For the internal adsorption of oxygen, the molecules also dissociate in most cases and the zigzag bridge site is the most preferred site. After molecular adsorption for both hydrogen and oxygen, the buckling of the nanotubes increased. Frustration effects in the nanotube due to molecular adsorption are also noted. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-31085-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:6:p:1-11:10.1140/epjb/e2013-31085-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2013-31085-5

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:86:y:2013:i:6:p:1-11:10.1140/epjb/e2013-31085-5