EconPapers    
Economics at your fingertips  
 

First principles study on magnetic properties in ZnS doped with palladium

Jian-Ping Tang, Ling-Ling Wang (), Wen-Zhi Xiao () and Xiao-Fei Li

The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 8, 1-5

Abstract: The electronic structures and magnetic properties in zinc-blende structure ZnS doped with nonmagnetic noble metal palladium have been investigated by means of density functional theory (DFT) calculations employing the generalised gradient approximation (GGA) and the GGA plus Hubbard U (GGA + U). Both the GGA and GGA + U methods demonstrate half-metallicity in Pd-doped ZnS with total magnetic moments of about 2.0μ B per supercell. The half-metallic ferromagnetism stems from the hybridisation between Pd-4d and S-3p states and could be attributed to a double-exchange mechanism. These results suggest a recipe for obtaining a promising dilute magnetic semiconductor by doping nonmagnetic 4d elements in ZnS matrix. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-31162-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:8:p:1-5:10.1140/epjb/e2013-31162-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2013-31162-9

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:86:y:2013:i:8:p:1-5:10.1140/epjb/e2013-31162-9