EconPapers    
Economics at your fingertips  
 

1/f noise in graphene

Bruno Pellegrini ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 9, 1-12

Abstract: We present a novel and comprehensive model of 1/f noise in nanoscale graphene devices that accounts for the unusual and so far unexplained experimental characteristics. We find that the noise power spectral density versus carrier concentration of single-layer sheet devices has a behavior characterized by a shape going from the M to the Λ type as the material inhomogeneity increases, whereas the shape becomes of V type in bilayer sheet devices for any inhomogeneity, or of M type at high carrier concentration. In single-layer nanoribbons, instead, the ratio of noise to resistance versus the latter quantity is approximately constant, whereas in the bilayer case it exhibits a linear decrease on a logarithmic scale as resistance increases and its limit for zero resistance equals the single-layer value. Noise at the Dirac point is much greater in single-layer than in bilayer devices and it increases with temperature. The origin of 1/f noise is attributed to the traps in the device and to their relaxation time dispersion. The coupling of trap charge fluctuations with the electrode current is computed according to the electrokinematics theorem, by taking into account their opposite effects on electrons and holes, as well as the device inhomogeneities. The results agree well with experiments. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-40571-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:9:p:1-12:10.1140/epjb/e2013-40571-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2013-40571-7

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:86:y:2013:i:9:p:1-12:10.1140/epjb/e2013-40571-7