Edge states and topological orders in the spin liquid phases of star lattice
Guang-Yao Huang,
Shi-Dong Liang () and
Dao-Xin Yao ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 9, 1-6
Abstract:
The integer quantum Hall effect (IQHE) on star lattice is studied through edge states in the context of spin liquid. We apply the bulk-edge correspondence to the star lattice and analyze the edge states and their topological orders for different spin liquid phases. The band structures and Chern number depend on the local spontaneous magnetic flux and hopping parameters due to the breaking of the time reversal and space inversion symmetries. We give the characteristics of bulk and edge energy structures and their corresponding Chern numbers in the uniform, nematic and chiral spin liquids. In particular, we obtain analytically the phase diagram of the topological orders for the chiral spin liquid states SL[φ,φ,−2φ], where φ is the magnetic flux in two triangles and a dodecagon in one unit cell. Moreover, because of the direct connection between Chern number and the conductance of IQHE, we can further distinguish the different spin liquid phases through a Hall measurement. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013
Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-31040-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:9:p:1-6:10.1140/epjb/e2013-31040-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2013-31040-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().