EconPapers    
Economics at your fingertips  
 

Quench dynamics of edge states in 2-D topological insulator ribbons

Aavishkar Patel (), Shraddha Sharma and Amit Dutta

The European Physical Journal B: Condensed Matter and Complex Systems, 2013, vol. 86, issue 9, 1-6

Abstract: We study the dynamics of edge states of the two dimensional BHZ Hamiltonian in a ribbon geometry following a sudden quench to the quantum critical point separating the topological insulator phase from the trivial insulator phase. The effective edge state Hamiltonian is a collection of decoupled qubit-like two-level systems which get coupled to bulk states following the quench. We notice a pronounced collapse and revival of the Lochschmidt echo for low-energy edge states illustrating the oscillation of the state between the two edges. We also observe a similar collapse and revival in the spin Hall current carried by these edge states, leading to a persistence of its time-averaged value. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2013-40657-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:86:y:2013:i:9:p:1-6:10.1140/epjb/e2013-40657-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2013-40657-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:86:y:2013:i:9:p:1-6:10.1140/epjb/e2013-40657-2