Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime
Alessandro Monteros,
Gurdip Uppal,
Stephen McMillan,
Mircea Crisan and
Ionel Ţifrea ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2014, vol. 87, issue 12, 1-6
Abstract:
We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The system’s electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient (S) and the thermal conductivity (κ), along with the system’s thermoelectric figure of merit (ZT) are numerically estimated based on a Green’s function formalism that includes contributions up to the Hartree-Fock level. Our results account for finite on-site Coulomb interaction terms in both component quantum dots and discuss various ways leading to an enhanced thermoelectric figure of merit for the system. We demonstrate that the presence of Fano resonances in the Coulomb blockade regime is responsible for a strong violation of the Wiedemann-Franz law and a considerable enhancement of the system’s figure of merit (ZT). Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014
Keywords: Mesoscopic and Nanoscale Systems (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2014-50656-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:87:y:2014:i:12:p:1-6:10.1140/epjb/e2014-50656-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2014-50656-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().