EconPapers    
Economics at your fingertips  
 

LMG model: Markovian evolution of classical and quantum correlations under decoherence

Nayereh Majd (), Jahangir Payamara and Fariba Daliri

The European Physical Journal B: Condensed Matter and Complex Systems, 2014, vol. 87, issue 3, 1-12

Abstract: We have investigated the quantum phase transition in the ground state of collective Lipkin-Meshkov-Glick model (LMG model) subjected to decoherence due to its interaction, represented by a quantum channel, with an environment. We discuss the behavior of quantum and classical pair wise correlations in the system, with the quantumness of correlations measured by quantum discord (QD), entanglement of formation (EOF), measurement-induced disturbance (MID) and the Clauser-Horne-Shimony-Holt-Bell function (CHSH-Bell function). The time evolution established by system-environment interactions is assumed to be Markovian in nature and the quantum channels studied include the amplitude damping (AD), phase damping (PD), bit-flip (BF), phase-flip (PF), and bit-phase-flip (BPF) channels. One can identify appropriate quantities associated with the dynamics of quantum correlations signifying quantum phase transition in the model. Surprisingly, the CHSH-Bell function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Keywords: Statistical and Nonlinear Physics (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2014-40652-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:87:y:2014:i:3:p:1-12:10.1140/epjb/e2014-40652-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2014-40652-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:87:y:2014:i:3:p:1-12:10.1140/epjb/e2014-40652-1