Antiferromagnetic metal phases in double perovskites having microscopic phase segregation due to strong antisite defect concentration
Prabuddha Sanyal ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2015, vol. 88, issue 11, 1-7
Abstract:
Recently an antiferromagnetic metal phase has been proposed in double perovskites materials like Sr 2 FeMoO 6 (SFMO), when electron doped. This material has been found to change from half-metallic ferromagnet to a novel antiferromagnetic metal (AFM) upon La-overdoping. The original proposition of such an AFM phase was made for ordered samples, but the experimental realization of La-overdoped SFMO has been found to contain a substantial fraction of antisite defects. A microscopic chemical phase segregation into alternate Fe and Mo rich regions was observed. In this paper we propose a possible scenario in which an antiferromagnetic metal phase can still be stabilized even in presence of such strong antisite defect concentration and phase segregation, by a novel kinetic energy-driven mechanism. Our results thus provide a plausible explanation to the experimental observations in the La-overdoped regime. Antisite regions can thus give rise to antiferromagnetic metallic phases, although the metal is low-dimensional. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015
Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2015-60409-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:88:y:2015:i:11:p:1-7:10.1140/epjb/e2015-60409-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2015-60409-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().