Ordered vs. disordered states of the random-field model in three dimensions
Dmitry Garanin () and
Eugene Chudnovsky
The European Physical Journal B: Condensed Matter and Complex Systems, 2015, vol. 88, issue 4, 1-19
Abstract:
We report numerical investigation of the glassy behavior of random-field exchange models in three dimensions. Correlation of energy with the magnetization for different numbers of spin components has been studied. There is a profound difference between the models with two and three spin components with respect to the stability of the magnetized state due to the different kinds of singularities: vortex loops and hedgehogs, respectively. Memory effects pertinent to such states have been investigated. Insight into the mechanism of the large-scale disordering is provided by numerically implementing the Imry-Ma argument in which the spins follow the random field averaged over correlated volumes. Thermal stability of the magnetized states is investigated by the Monte Carlo method. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015
Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2015-50604-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:88:y:2015:i:4:p:1-19:10.1140/epjb/e2015-50604-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2015-50604-x
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().