EconPapers    
Economics at your fingertips  
 

Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map

Yunyun Li, Nianbei Li () and Baowen Li ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2015, vol. 88, issue 7, 1-6

Abstract: In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam β (FPU-β) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The temperature behavior of the thermal conductivities of 1D coupled rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism for normal heat conduction. However, two different temperature behaviors of thermal conductivities have been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the debate whether there is a phase transition of thermal conductivities as the function of temperature. In this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator lattice. We find that the temperature dependence follows a power law behavior which is different with the previously found temperature behaviors. Our results also support the claim that there is no phase transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov standard map. It is found that the momentum diffusion constant for 1D coupled rotator lattice follows a power-law temperature dependence of T −3.2 which is close to that of Chirikov standard map which follows a behavior of T −3 . Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Keywords: Statistical and Nonlinear Physics (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2015-60361-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:88:y:2015:i:7:p:1-6:10.1140/epjb/e2015-60361-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2015-60361-5

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:88:y:2015:i:7:p:1-6:10.1140/epjb/e2015-60361-5