EconPapers    
Economics at your fingertips  
 

Floquet analysis of pulsed Dirac systems: a way to simulate rippled graphene

Tridev Mishra, Tapomoy Sarkar and Jayendra Bandyopadhyay ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2015, vol. 88, issue 9, 1-10

Abstract: The low energy continuum limit of graphene is effectively known to be modeled using the Dirac equation in (2 + 1) dimensions. We consider the possibility of using a modulated high frequency periodic driving of a two-dimensional system (optical lattice) to simulate properties of rippled graphene. We suggest that the Dirac Hamiltonian in a curved background space can also be effectively simulated by a suitable driving scheme in an optical lattice. The time dependent system yields, in the approximate limit of high frequency pulsing, an effective time independent Hamiltonian that governs the time evolution, except for an initial and a final kick. We use a specific form of 4-phase pulsed forcing with suitably tuned choice of modulating operators to mimic the effects of curvature. The extent of curvature is found to be directly related to ω −1 the time period of the driving field at the leading order. We apply the method to engineer the effects of curved background space. We find that the imprint of curvilinear geometry modifies the electronic properties, such as LDOS, significantly. We suggest that this method shall be useful in studying the response of various properties of such systems to non-trivial geometry without requiring any actual physical deformations. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2015-60356-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:88:y:2015:i:9:p:1-10:10.1140/epjb/e2015-60356-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2015-60356-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:88:y:2015:i:9:p:1-10:10.1140/epjb/e2015-60356-2