EconPapers    
Economics at your fingertips  
 

On the origin of multi-step spin transition behaviour in 1D nanoparticles

Daniel Chiruta, Catalin-Maricel Jureschi, Jorge Linares (), Pierre Dahoo, Yann Garcia and Aurelian Rotaru

The European Physical Journal B: Condensed Matter and Complex Systems, 2015, vol. 88, issue 9, 1-5

Abstract: To investigate the spin state switching mechanism in spin crossover (SCO) nanoparticles, a special attention is given to three-step thermally induced SCO behavior in 1D chains. An additional term is included in the standard Ising-like Hamiltonian to account for the border interaction between SCO molecules and its local environment. It is shown that this additional interaction, together with the short range interaction, drives the multi-steps thermal hysteretic behavior in 1D SCO systems. The relation between a polymeric matrix and this particular multi-step SCO phenomenon is discussed accordingly. Finally, the environmental influence on the SCO system’s size is analyzed as well. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2015-60340-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:88:y:2015:i:9:p:1-5:10.1140/epjb/e2015-60340-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2015-60340-x

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:88:y:2015:i:9:p:1-5:10.1140/epjb/e2015-60340-x