Tunable terahertz bistability with temperature in photonic crystals containing an InSb layer and coupled nonlinear defects
Abbas Ghasempour Ardakani (),
Tahereh Kalantari and
Hamid Nadgaran
The European Physical Journal B: Condensed Matter and Complex Systems, 2015, vol. 88, issue 9, 1-5
Abstract:
In this paper, we investigate the terahertz bistability behavior in a photonic crystal doped with an InSb layer and coupled nonlinear defects by employing the modified transfer matrix method. It is demonstrated that the switch-up threshold for bistability can be strongly controlled by ambient temperature without changing the structure of photonic multilayer. The switch-up threshold increases with increasing temperature to a certain value. No dramatic changes are observed in switch-down threshold with increasing the ambient temperature. Further increase of temperature from 309 K to 311 K leads to the strong reduction of switch-up threshold. Our results reveal that the switch-up threshold for the case T=311 K is approximately 3000 times lower than that of the case T=309 K. This sensitivity to temperature can have potential applications in terahertz devices. When temperature increases from 309 K, both switch-up and switch-down threshold increase. However, the switch-down threshold indicates much smaller changes compared to the switch-up threshold. Furthermore, we investigate the effect of incident angle on the bistability behavior. It is shown that the temperature at which the lowest value of switching powers is achieved depends on the incident angle. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015
Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2015-60524-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:88:y:2015:i:9:p:1-5:10.1140/epjb/e2015-60524-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2015-60524-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().